
GPT-5
PROMPTING

GUIDE 
Aug 20, 2025

www.infozion.in
BY INFOZION TECHNOLOGIES



GPT-5 prompting guide 
GPT-5, our newest flagship model, represents a substantial leap
forward in agentic task performance, coding, raw intelligence, and
steerability. 

While we trust it will perform excellently “out of the box” across a
wide range of domains, in this guide we’ll cover prompting tips to
maximize the quality of model outputs, derived from our
experience training and applying the model to real-world tasks.
We discuss concepts like improving agentic task performance,
ensuring instruction adherence, making use of newly API
features, and optimizing coding for frontend and software
engineering tasks - with key insights into AI code editor Cursor’s
prompt tuning work with GPT-5.

We’ve seen significant gains from applying these best practices
and adopting our canonical tools whenever possible, and we
hope that this guide, along with the prompt optimizer tool we’ve
built, will serve as a launchpad for your use of GPT-5. But, as
always, remember that prompting is not a one-size-fits-all
exercise - we encourage you to run experiments and iterate on
the foundation offered here to find the best solution for your
problem. 



We trained GPT-5 with developers in mind: we’ve focused on improving

tool calling, instruction following, and long-context understanding to serve

Agentic workflow predictability as the best foundation model for agentic

applications. If adopting GPT-5 for agentic and tool calling flows, we

recommend upgrading to the Responses API, where reasoning is

persisted between tool calls, leading to more efficient and intelligent

outputs

Agentic workflow predictability

Controlling agentic eagerness 

Agentic scaffolds can span a wide spectrum of control—some systems

delegate the vast majority of decision-making to the underlying model,

while others keep the model on a tight leash with heavy programmatic

logical branching. GPT-5 is trained to operate anywhere along this

spectrum, from making high-level decisions under ambiguous

circumstances to handling focused, well-defined tasks. In this section we

cover how to best calibrate GPT-5’s agentic eagerness: in other words, its

balance between proactivity and awaiting explicit guidance. 

Prompting for less eagerness 



GPT-5 is, by default, thorough and comprehensive when trying to gather
context in an agentic environment to ensure it will produce a correct
answer. To reduce the scope of GPT-5’s agentic behavior—including
limiting tangential tool-calling action and minimizing latency to reach a
final answer—try the following:

If you’re willing to be maximally prescriptive, you can even set fixed tool
call budgets, like the one below. The budget can naturally vary based on
your desired search depth. 

Switch to a lower reasoning_effort . This reduces exploration depth but
improves efficiency and latency. Many workflows can be accomplished
with consistent results at medium or even low reasoning_effort . 

Define clear criteria in your prompt for how you want the model to
explore the problem space. This reduces the model’s need to explore and
reason about too many ideas:

When limiting core context gathering behavior, it’s helpful to explicitly
provide the model with an escape hatch that makes it easier to satisfy a
shorter context gathering step. Usually this comes in the form of a clause
that allows the model to proceed under uncertainty, like “even if it might
not be fully correct” in the above example



Prompting for more eagerness 

On the other hand, if you’d like to encourage model autonomy,
increase tool-calling persistence, and reduce occurrences of clarifying
questions or otherwise handing back to the user, we recommend
increasing reasoning_effort , and using a prompt like the following to
encourage persistence and thorough task completion:

Generally, it can be helpful to clearly state the stop conditions of the
agentic tasks, outline safe versus unsafe actions, and define when, if
ever, it’s acceptable for the model to hand back to the user. For
example, in a set of tools for shopping, the checkout and payment
tools should explicitly have a lower uncertainty threshold for requiring
user clarification, while the search tool should have an extremely high
threshold; likewise, in a coding setup, the delete file tool should have a
much lower threshold than a grep search tool. 

Tool preambles 

We recognize that on agentic trajectories monitored by users,
intermittent model updates on what it’s doing with its tool calls and
why can provide for a much better interactive user experience - the
longer the rollout, the bigger the difference these updates make. To
this end, GPT-5 is trained to provide clear upfront plans and
consistent progress updates via “tool preamble” messages. 

You can steer the frequency, style, and content of tool preambles in
your prompt—from detailed explanations of every single tool call to a
brief upfront plan and everything in between. This is an example of a
highquality preamble prompt:



Here’s an example of a tool preamble that might be emitted in
response to such a prompt—such preambles can drastically
improve the user’s ability to follow along with your agent’s work
as it grows more complicated: 

Reasoning effort 

We provide a reasoning_effort parameter to control how hard the
model thinks and how willingly it calls tools; the default is
medium , but you should scale up or down depending on the
difficulty of your task. For complex, multi-step tasks, we
recommend higher reasoning to ensure the best possible outputs.
Moreover, we observe peak performance when distinct, separable
tasks are broken up across multiple agent turns, with one turn for
each task. 

Reusing reasoning context with the
responses API
We strongly recommend using the Responses API when using
GPT-5 to unlock improved agentic flows, lower costs, and more
efficient token usage in your applications.

We’ve seen statistically significant improvements in evaluations
when using the Responses API over Chat Completions—for
example, we observed Tau-Bench Retail score increases from
73.9% to 78.2% just by switching to the Responses API and 



and including previous_response_id to pass back previous
reasoning items into subsequent requests. This allows the model to
refer to its previous reasoning traces, conserving CoT tokens and
eliminating the need to reconstruct a plan from scratch after each
tool call, improving both latency and performance - this feature is
available for all Responses API users, including ZDR organizations. 

Maximizing coding performance,from planning
to execution 

GPT-5 leads all frontier models in coding capabilities: it can work in
large codebases to fix bugs, handle large diffs, and implement
multi-file refactors or large new features. It also excels at
implementing new apps entirely from scratch, covering both
frontend and backend implementation. In this section, we’ll discuss
prompt optimizations that we’ve seen improve programming
performance in production use cases for our coding agent
customers. 

Frontend app development 

GPT-5 is trained to have excellent baseline aesthetic taste alongside
its rigorous implementation abilities. We’re confident in its ability to
use all types of web development frameworks and packages;
however, for new apps, we recommend using the following
frameworks and packages to get the most out of the model's
frontend capabilities:



Frameworks: Next.js (TypeScript), React, HTML 

Styling / UI: Tailwind CSS, shadcn/ui, Radix Themes 

Icons: Material Symbols, Heroicons, Lucide 

Animation: Motion 

Fonts: San Serif, Inter, Geist, Mona Sans, IBM Plex Sans,
Manrope

Zero-to-one app generation
GPT-5 is excellent at building applications in one shot. In early
Maximizing coding performance,from planning to execution
Frontend app development Zero-to-one app generation
experimentation with the model, users have found that prompts like
the one below—asking the model to iteratively execute against
selfconstructed excellence rubrics—improve output quality by using
GPT-5’s thorough planning and self-reflection capabilities. 

Matching codebase design standard
When implementing incremental changes and refactors in existing
apps, model-written code should adhere to existing style and
design standards, and “blend in” to the codebase as neatly as
possible. Without special prompting, GPT-5 already searches for
reference context from the codebase - for example reading 



package.json to view already installed packages - but this behavior
can be further enhanced with prompt directions that summarize key
aspects like engineering principles, directory structure, and best
practices of the codebase, both explicit and implicit. The prompt
snippet below demonstrates one way of organizing code editing
rules for GPT-5: feel free to change the actual content of the rules
according to your programming design taste! 

Collaborative coding in production: Cursor’s
GPT-5 prompt tuning 
We’re proud to have had AI code editor Cursor as a trusted alpha
tester for GPT-5: below, we show a peek into how Cursor tuned
their prompts to get the most out of the model’s capabilities. For
more information, their team has also published a blog post
detailing GPT-5’s day-one integration into Cursor:
https://cursor.com/blog/gpt-5 

Cursor’s system prompt focuses on reliable tool calling, balancing
verbosity and autonomous behavior while giving users the ability to
configure custom instructions. Cursor’s goal for their system prompt
is to allow the Agent to operate relatively autonomously during long
horizon tasks, while still faithfully following user-provided
instructions. 

System prompt and parameter tuning



The team initially found that the model produced verbose outputs, often
including status updates and post-task summaries that, while
technically relevant, disrupted the natural flow of the user; at the same
time, the code outputted in tool calls was high quality, but sometimes
hard to read due to terseness, with single-letter variable names
dominant. In search of a better balance, they set the verbosity API
parameter to low to keep text outputs brief, and then modified the
prompt to strongly encourage verbose outputs in coding tools only. 

This space can be used to share a pull-out quote or to highlight
important ideas. You can also share links to your website or social

channels, so the readers will know how to reach you.

This dual usage of parameter and prompt resulted in a balanced format
combining efficient, concise status updates and final work summary
with much more readable code diffs.

Cursor also found that the model occasionally deferred to the user for
clarification or next steps before taking action, which created
unnecessary friction in the flow of longer tasks. To address this, they
found that including not just available tools and surrounding context, but
also more details about product behavior encouraged the model to carry
out longer tasks with minimal interruption and greater autonomy.
Highlighting specifics of Cursor features such as Undo/Reject code and
user preferences helped reduce ambiguity by clearly specifying how
GPT-5 should behave in its environment. For longer horizon tasks, they
found this prompt improved performance: 

Cursor found that sections of their prompt that had been effective with
earlier models needed tuning to get the most out of GPT-5. Here is one
example below: 



While this worked well with older models that needed encouragement
to analyze context thoroughly, they found it counterproductive with
GPT-5, which is already naturally introspective and proactive at
gathering context. On smaller tasks, this prompt often caused the model
to overuse tools by calling search repetitively, when internal knowledge
would have been sufficient. 

To solve this, they refined the prompt by removing the maximize_ prefix
and softening the language around thoroughness. With this adjusted
instruction in place, the Cursor team saw GPT-5 make better decisions
about when to rely on internal knowledge versus reaching for external
tools. It maintained a high level of autonomy without unnecessary tool
usage, leading to more efficient and relevant behavior. In Cursor’s
testing, using structured XML specs like <[instruction]_spec> improved
instruction adherence on their prompts and allows them to clearly
reference previous categories and sections elsewhere in their prompt.

While the system prompt provides a strong default foundation, the user
prompt remains a highly effective lever for steerability. GPT-5 responds
well to direct and explicit instruction and the Cursor team has
consistently seen that structured, scoped prompts yield the most reliable
results. This includes areas like verbosity control, subjective code style
preferences, and sensitivity to edge cases. Cursor found allowing users
to configure their own custom Cursor rules to be particularly impactful
with GPT-5’s improved steerability, giving their users a more
customized experience.



Optimizing intelligence and instruction-
following 

Steering 
As our most steerable model yet, GPT-5 is extraordinarily receptive to
prompt instructions surrounding verbosity, tone, and tool calling
behavior.

Verbosity
In addition to being able to control the reasoning_effort as in previous
reasoning models, in GPT-5 we introduce a new API parameter called
verbosity, which influences the length of the model’s final answer, as
opposed to the length of its thinking. Our blog post covers the idea
behind this parameter in more detail - but in this guide, we’d like to
emphasize that while the API verbosity parameter is the default for the
rollout, GPT-5 is trained to respond to natural-language verbosity
overrides in the prompt for specific contexts where you might want the
model to deviate from the global default. Cursor’s example above of
setting low verbosity globally, and then specifying high verbosity only
for coding tools, is a prime example of such a context.

Instruction following
Like GPT-4.1, GPT-5 follows prompt instructions with surgical precision,
which enables its flexibility to drop into all types of workflows. However, 



its careful instruction-following behavior means that poorly-constructed
prompts containing contradictory or vague instructions can be more
damaging to GPT-5 than to other models, as it expends reasoning
tokens searching for a way to reconcile the contradictions rather than
picking one instruction at random. 

Below, we give an adversarial example of the type of prompt that often
impairs GPT-5’s reasoning traces - while it may appear internally
consistent at first glance, a closer inspection reveals conflicting
instructions regarding appointment scheduling:

Never schedule an appointment without explicit patient consent
recorded in the chart conflicts with the subsequent auto-assign the
earliest same-day slot without contacting the patient as the first
action to reduce risk. 

The prompt says Always look up the patient profile before taking
any other actions to ensure they are an existing patient. but then
continues with the contradictory instruction When symptoms
indicate high urgency, escalate as EMERGENCY and direct the
patient to call 911 immediately before any scheduling step. 

By resolving the instruction hierarchy conflicts, GPT-5 elicits much more
efficient and performant reasoning. We fixed the contradictions by:



Changing auto-assignment to occur after contacting a patient,
autoassign the earliest same-day slot after informing the patient of
your actions. to be consistent with only scheduling with consent. 

Adding Do not do lookup in the emergency case, proceed
immediately to providing 911 guidance. to let the model know it is
ok to not look up in case of emergency

We understand that the process of building prompts is an iterative one,
and many prompts are living documents constantly being updated by
different stakeholders - but this is all the more reason to thoroughly
review them for poorly-worded instructions. Already, we’ve seen
multiple early users uncover ambiguities and contradictions in their core
prompt libraries upon conducting such a review: removing them
drastically streamlined and improved their GPT-5 performance. We
recommend testing your prompts in our prompt optimizer tool to help
identify these types of issues.

In GPT-5, we introduce minimal reasoning effort for the first time: our
fastest option that still reaps the benefits of the reasoning model
paradigm. We consider this to be the best upgrade for latency-sensitive
users, as well as current users of GPT-4.1.

Minimal reasoning



Perhaps unsurprisingly, we recommend prompting patterns that are
similar to GPT-4.1 for best results. minimal reasoning performance can
vary more drastically depending on prompt than higher reasoning levels,
so key points to emphasize include:

1.Prompting the model to give a brief explanation summarizing its
thought process at the start of the final answer, for example via a bullet
point list, improves performance on tasks requiring higher intelligence. 

2. Requesting thorough and descriptive tool-calling preambles that - For
high-acuity Red and Orange cases, auto-assign the earliest same-day
slot Minimal reasoning continually update the user on task progress
improves performance in agentic workflows. 

3. Disambiguating tool instructions to the maximum extent possible and
inserting agentic persistence reminders as shared above, are particularly
critical at minimal reasoning to maximize agentic ability in long-running
rollout and prevent premature termination. 

4. Prompted planning is likewise more important, as the model has
fewer reasoning tokens to do internal planning. Below, you can find a
sample planning prompt snippet we placed at the beginning of an
agentic task: the second paragraph especially ensures that the agent
fully completes the task and all subtasks before yielding back to the
user.



Markdown formatting 
By default, GPT-5 in the API does not format its final answers in
Markdown, in order to preserve maximum compatibility with developers
whose applications may not support Markdown rendering. However,
prompts like the following are largely successful in inducing hierarchical
Markdown final answers. 

Occasionally, adherence to Markdown instructions specified in the
system prompt can degrade over the course of a long conversation. In
the event that you experience this, we’ve seen consistent adherence
from appending a Markdown instruction every 3-5 user messages. 

Meta prompting

Finally, to close with a meta-point, early testers have found great
success using GPT-5 as a meta-prompter for itself. Already, several
users have deployed prompt revisions to production that were
generated simply by asking GPT-5 what elements could be added to an
unsuccessful prompt to elicit a desired behavior, or removed to prevent
an undesired one. 

Appendix 

SWE-Bench verified developer instructions 

Agentic coding tool definitions 



As shared in the GPT-4.1 prompting guide, here is our most updated
apply_patch implementation: we highly recommend using apply_patch
for file edits to match the training distribution. The newest
implementation should match the GPT-4.1 implementation in the
overwhelming majority of cases. 

Taubench-Retail minimal reasoning
instructions 

Terminal-Bench prompt 



www.infozion.in

+91-8604-37-4831

hi@infozion.in

infoziontechnologies

Infozion Technologies

Infozion Technologies LLP

https://www.infozion.in/
https://www.instagram.com/infoziontechnologies/
https://www.linkedin.com/company/infoziontechnologies/posts?lipi=urn%3Ali%3Apage%3Ad_flagship3_feed%3BTwWiijgoRY%2B%2BGgBNjE0nSg%3D%3D
https://www.facebook.com/infoziontechnologies.in

